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Abstract. Feature extraction algorithms, such as convolutional neural networks,

have introduced the possibility of using deep learning to train directly on raw data

without the need for rule-based feature engineering. In the context particle physics

such end-to-end approaches can be used for event classification to learn directly

from detector-level data in a way that is completely independent of the high-level

physics reconstruction. We demonstrate a technique for building such end-to-end event

classifiers to distinguish simulated electromagnetic decays in a high-fidelity model of

the CMS Electromagnetic Calorimeter.
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1. Introduction & Motivation

An essential part of any new physics searches at the Large Hadron Collider (LHC) at

CERN involves event classification, or distinguishing signal events from the background.

Traditional machine learning techniques have relied on high-level features in the

form of particle 4-momenta - consistent with our understanding of particle physics

phenomenology. However, such high-level features are the result of a rule-based casting

of the raw detector data into progressively more physically-motivated quantities. While

such approaches have proven to be useful, they are highly dependent on our ability

to completely and effectively model all aspects of particle decay phenomenology. On

the other hand, powerful image-based Convolutional Neural Network (CNN) algorithms

have emerged, capable of training directly on raw data, learning the pertinent features

unassisted - so-called end-to-end deep learning classifiers. In this paper, we explore

the use of such classifiers on simulated data from the Electromagnetic Calorimeter

(ECAL) of the Compact Muon Solenoid (CMS) detector at the LHC. Through the

use of simulated toy decays, we demonstrate that these classifiers are able to effectively

discern event phenomenology completely unassisted.

In this paper, we restrict ourselves to electromagnetic showers. A number of

recent efforts have concentrated on image-based physics classification - for instance,

jet shower [1,2] and neutrino classification [3], as well as traditional event classification

[4–7]. However, these approaches mostly rely on the output of rule-based high-level

physics reconstruction algorithms and are thus subject to any mis-modeling contained

therein. While a few have begun to use low-level data for event classification [8],

in their current form, they still employ image construction techniques that depict

the underlying detector geometry in rough approximation. As suggested in [7], such

techniques potentially suffer from pixelization effects. In contrast, we construct our

images in the detector coordinate system using only detector-level data. This minimizes

our exposure to potential mis-modeling effects outside of the event classifier itself and

ensures as high fidelity a representation of the detector as possible.

In section 2, we describe how CMS ECAL performs hit reconstruction. In section

3, we describe the use of end-to-end classifiers for electromagnetic shower classification.

Then, in section 4, we discuss the construction of a full event classifier using various

types of state-of-the-art deep learning models. We discuss our future plans in section 6

and summarize our conclusions in section 7.

2. Detector Reconstruction

2.1. The CMS ECAL Detector

The CMS experiment is one four large collider experiments at the LHC at CERN [9].

The focus of this paper is on the Electromagnetic Calorimeter, the sub-detector of

CMS, responsible for resolving and localizing the energies of photons and electrons.

It plays a major role in the detection of the Higgs boson and other Electroweak
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phenomena [4]. The ECAL is a hermetically-sealed cylinder composed of lead tungstate

(PbWO4) crystals packed together into a barrel section (EB) and two circular endcap

(EE) sections. The barrel section is composed of 61200 crystals segmented 170-fold in

pseudorapidity (η) and 360-fold in the azimuth angle (φ). Each circular endcap section

contains 7324 crystals segmented in a rectilinear grid. The crystals are angled toward

the interaction point but with a slight offset. This minimizes particles slipping through

cracks but means the amount of an ECAL crystal a particles traverses is position-

dependent.

2.2. ECAL Hit Reconstruction

2.2.1. Particle Shower Formation and Detection. On its way from the interaction

point, a high-energy electron (e) or photon (γ) will interact with material from other

subdetectors in CMS, causing it to shower and deposit its energy over a range of crystals

in the ECAL. While shower formation is a stochastic process, on average, roughly 94%

of the e/γ shower’s energy is deposited within a 3 by 3 grid of crystals. Upon interacting

with the ECAL crystals, the e/γ shower induces scintillating light which is measured

by light-collecting diodes at the other end of the crystal as a signal pulse. To first

approximation, e/γ shower profiles are expected to be identical in the ECAL. However,

due to its interaction with the magnetic field of the CMS solenoid (B = 3.8 T), the

charged electron emits bremsstrahlung, preferentially in φ. This introduces a higher-

order perturbation to the e shower profile causing it to be more spread out and slightly

asymmetric in φ compared to the photon shower.

2.2.2. The Digitized Hit. The signal pulse is amplified and shaped by a multi-gain

preamplifier before being digitized at 40 MHz. The net effect is a signal pulse with a

stepped profile that rises sharply to a peak before falling off gradually, with a full width

of under 150 ns at half maximum. For every recorded event, ten such steps or samples

are stored, giving ten amplitude readings per crystal, separated by 25 ns. These samples

define the raw digitized hit or digi, and represent the lowest level, physically-sensible

calorimeter data. The timing calibration is such that the pulse appears on the 4th time

sample, such that the baseline electronics noise, known as the pedestal, can be estimated

from the first three time samples.

2.2.3. The Reconstructed Hit. A fitting algorithm is applied to the digitized hit to

determine the energy and time from the peak and shape of the pulse. A number of

effects must be corrected for before arriving at a calibrated hit. Most notable is the

crystal transparency loss and recovery of the crystals under the presence and absence

of beam radiation, respectively. After correcting for this and other effects, a calibrated,

reconstructed hit or rec hit is produced containing energy and timing information.



End-to-end event classification. 4

2.2.4. High-level Physics Features. Through a rule-based process known as high-level

physics reconstruction [10], the reconstructed hits are transformed into higher-level

features like particle IDs, 4-momenta, and shower shapes. Further in the analysis chain,

even more complex features are engineered to achieve greater separation of signal from

background. These features have their roots in particle physics theory. In machine

learning parlance, these are the equivalent of hand-engineered features. In particle

physics, as in computer vision, high-level features have traditionally served as inputs to

machine learning algorithms like fully-connected neural networks and boosted decisions

trees for event classification.

Having described ECAL hit reconstruction, we use the term end-to-end classifier,

more precisely, to denote classifiers that use either digitized or reconstructed hits as

inputs.

3. Shower Classification

As a first step towards event classification, we tackle the easier problem of e/γ shower

classification. To begin, we use events generated with exactly one negatively charged e

or one γ of fixed transverse momentum pT = 50 GeV fired from the interaction point

to a direction sampled uniformly from pseudorapidity |η| < 1.4 and azimuthal angle

−π < φ < π, effectively constraining the e/γ shower to the barrel section of ECAL.

3.1. Input Image

To construct the image of the shower, we take a grid of 32 by 32 crystals from ECAL

centered around the maximum-energy shower deposit (the shower seed). Each pixel

in the image grid will correspond exactly to one crystal, though not necessarily the

same crystal from event to event, and will be filled with the relevant data for that

crystal: amplitude, energy, etc. As the image is always centered on the shower seed,

shower classification does not take full advantage of the feature translation abilities of

CNNs. The classifier must still be able to generalize due to the stochastic nature of

shower formation, and position-dependent crystal interaction. An “averaged” photon

and electron shower over 50,000 events is shown in Figure 1.

3.2. Preprocessing

Preprocessing is essential for ensuring numerical stability in the optimizer, especially

with large images and deep networks. We experimented with linear and logarithmic

transformations. For the latter, because the shower image is sparse, we attempted

different schemes of shifting the log-transformed inputs relative to the sparse values.

For the digi amplitudes, there is the additional complication of neighboring crystals

reading out the pedestal values due to the activation of the ECAL selective readout

algorithm. We, therefore, tried different pedestal subtraction schemes in addition to

applying linear or log transformations.
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(a) Average electron shower (b) Average photon shower

Figure 1: e/γ showers averaged over 50k events. The e shower is slightly more spread

out in φ-in addition to being slightly asymmetric-due to bremsstrahlung effects.

3.3. Network Architecture.

We experimented with deep neural network architectures that can be primarily grouped

on the following categories: Convolutional Neural Networks (CNN), Long Short-Term

Memory (LSTM) and Fully-Connected Networks (FCN).

The CNN category included simplified implementations of VGG [11], Inception [12],

and Residual Net (ResNet) [13] architectures. We tried the following data combination

schemes:

(i) energy only

(ii) energy and time stacked

(iii) digitized amplitudes stacked

(iv) energy, time, and digitized amplitudes stacked

(v) (ii) and (iii) concatenated at output of convolutional layers

(vi) (ii) and (iii) concatenated at output of fully-connected layers

The LSTM networks [14] only used digi inputs and included the following

architectures: (i) Time-distributed: each digi amplitude image is connected to its own

CNN, flattened, and given as a sequence to LSTM layers [15]. (ii) Convolutional: the

LSTM layers act directly on a time sequence of convolutional layers [16].

The FCNs learned from the flattened energy and time images or the flattened digi

amplitude images and consisted of 2-, 3-, 6-hidden layers with 256 units per layer.
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3.4. Training Strategy.

The simulated sample consisted of 498k events evenly balanced between e and γ. Of

these, 320k (64%) were used for training, 89.6k (18%) for validation, and 88.4k (18%)

for a final test set. The validation set was used to evaluate competing architectures and

hyper-parameters within the above three network categories. For the best network in

each category, we evaluate their performance on the test set, with the results summarized

in section 5.

For e/γ classification we used binary cross-entropy loss with the ADAM adaptive

gradient optimizer, both with and without explicit learning rate decay. The initial

learning rate was set to 1 × 10−3 and we trained for 50 epochs by which point the

validation loss had more than plateaued. A dropout of 20% for fully-connected layers

and ReLU activation were used, with weights initialized from a truncated normal

distribution where applicable. Finally, the area under the curve of the Receiver

Operating Characteristic (ROC AUC) was chosen as a performance figure of merit,

due it interpretability in terms of signal efficiency and background rejection.

4. Event Classification

Two studies are presented. The first is a generalization of the shower classification

to full detector images. Recall that the e/γ particles are fired randomly, and so the

showers will appear to move in the image from event to event, providing a real test of

the feature-translation abilities of CNNs in a sparse image.

Then, we proceed to generalize to double particle decays-either an electron-positron

pair e+e−, or a photon pair γγ. The particles are allowed to have a range of transverse

momenta pT = (20, 80) GeV but it is required to be the same for each particle. The pair

decays back-to-back, such that the position of one is the inverse of the other in either

e+e− or γγ decay. One can think of two ways a classifier might learn to distinguish multi-

particle events: either from a difference in particle shower profiles, or from a difference

in the spatial arrangement of the particle showers, i.e. event kinematics. Back-to-

back decays provide a useful scenario for investigating the former due to the identical

kinematics. This forces the network to learn only from the shower profiles, providing an

unbiased test of the ability of CNNs to perform feature translation. Finally, we include

pile-up of 〈PU〉 = 25, but no underlying event simulation.

4.1. Input Image & Preprocessing.

In event classification, the image grid is 170 by 360 pixels corresponding to the full

ECAL barrel geometry. There is again an exact correspondence between calorimeter

crystals and image pixels. However, now the crystals underlying the detector image are

always fixed.
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4.2. Network Architecture & Training Strategy.

A VGG-type network proved to be cumbersome for event classification. The

convolutional to fully-connected interface caused an explosion of model weights by

several orders of magnitude. Coupled with the increased image sparsity (> 90%), this

made training unstable at learning rates above ∼ 10−3. Instead, we experimented

primarily with ResNet-type architectures without any fully-connected layers. While the

ResNets were stable even above learning rates of ∼ 10−3, we found that a lower learning

rate of 5× 10−4 worked best.

Interestingly, the original residual block worked better with sparse data compared

to the bottleneck version. We found the best performance for the residual block without

batch normalization, and with max pooling instead of average pooling, as might be

expected. A total of three down-samples performed better compared to the typical five

used in most ResNet implementations. Finally, with 320k training events, any ResNet

deeper than about 23 convolutional layers showed no further gain in performance.

5. Results.

5.1. Shower Classification Results

The classification scores of each deep learning model evaluated on the test set are

summarized in Table 1.

Table 1: Shower Classification Results.

Category Network ROC AUC

CNN VGG, energy 0.807

LSTM Conv-LSTM, digis 0.799

FCN 3-layers, digis 0.770

Within the CNN category, the different architectures all scored within 0.1% of

each other. LSTM-based architectures, as expected, took considerably longer to train

but showed no clear advantage over purely-CNN architectures. Within the FCN

category, the different networks all scored within < 1% of each other. The FCN-based

architectures consistently underperformed, even though feature translation did not play

a major role. Linear preprocessing worked best in each category, though, in general, the

results were not sensitive to the choice of preprocessing.

As noted in 2.2.1, in the ECAL, e showers are at first approximation expected to be

identical to their γ counterparts. And, by eye, it is difficult to tell the two apart. Yet our

results indicate that deep learning classifiers are able make very fine distinctions between

the two, picking up on higher-order perturbations to deliver a good classification score.
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(a) ResNet-23 (b) e+e− vs. γγ Classifier Output

Figure 2: Event Classification Results for e+e− vs. γγ using a 23-layer Residual Net.

5.2. Event Classification Results

The classification scores of the best deep learning model (ResNet-23) applied to single

and di-particle events are summarized in Table 2.

Table 2: Event Classification Results.

Decay Network ROC AUC

e vs. γ ResNet-23 0.788

e+e− vs. γγ ResNet-23 0.997

The single e/γ score compares favorably to the one from shower classification,

although is slightly lower. Therefore, while CNNs handle feature translation well even

for highly sparse data, the transition is not perfect. One important questions is - what

advantage does event classification offer over simpler shower classification? A partial

answer is provided by the di-particle result.

As shown in Table 2, the classifier score for double photon versus double electron

events is considerably higher. While the boost in classification score seems a little

surprising at first, it is to be expected. In particular, one could model the di-particle

prediction using the product of the individual shower classifiers’ predictions. If the mean

single shower mis-classification accuracy is y′single, then on average, one would accurately

classify the di-particle pair at a rate of ypair = 1−(y′single)
2. From the shower classification

CNN, y′single ∼ 0.26, giving ypair ∼ 0.93. The observed event classifier accuracy of ∼ 0.97

is even higher, suggesting that there are other effects present. Importantly, this accuracy

is achieved over a range of momentum and with pile-up. Even though we expect even

better performance compared to hand-engineered features in more complicated decay

topologies, the fact that the classifiers perform so well even in the relatively simple
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two-body decays, is encouraging. As this example suggests, the strength of end-to-end

event classifiers may lie in tackling complex, multi-particle decays, without the need to

introduce explicit kinematics.

6. Future Work

For future work, we would like to extend our study in two directions. First, we plan

to study more complex pp decays with non-trivial kinematics, with an eye towards

a realistic physics analysis. There are additional challenges, such ensuring that the

classifier is not correlated with an observable of interest. Second, we plan to extend the

end-to-end approach to the full CMS detector. The next natural steps are to include

the ECAL endcaps, the Hadronic Calorimeter and then the Tracker and Muon Systems.

Building a full end-to-end classifier from all the available data from the CMS detector

is the ultimate goal of this study.

7. Conclusions

In this paper, we have presented a technique for building end-to-end physics classifiers

for single electromagnetic shower classification and event classification. First, we

constructed high-fidelity images of electromagnetic showers from the CMS ECAL barrel

using low-level detector data. Afterwards, we used these images to train various deep

learning models to distinguish electron- and photon-induced showers and perform both

shower and event classification. In both cases, the classifiers were able to exploit higher-

order effects to obtain good discrimination. Finally, we distinguished pairs of identical

particles in back-to-back decays, where a marked increase in performance was seen,

suggesting the classifiers had learned to effectively model this type of a particle decay.

While there are still challenges and more work needed to bring this approach to data, our

results indicate a significant potential of end-to-end classifiers for high-energy physics

data analysis.
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